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Abstract—Deep learning systems have been growing in promi-
nence as a way to automatically characterize objects, trends,
and anomalies. Given the importance of deep learning sys-
tems, researchers have been investigating techniques to optimize
such systems. An area of particular interest has been using
large supercomputing systems to quickly generate effective deep
learning networks: a phase often referred to as “training” of
the deep learning neural network. As we scale existing deep
learning frameworks—such as Caffe—on these large supercom-
puting systems, we notice that the parallelism can help improve
the computation tremendously, leaving data I/O as the major
bottleneck limiting the overall system scalability. In this paper, we
first present a detailed analysis of the performance bottlenecks of
Caffe on large supercomputing systems. Our analysis shows that
the I/O subsystem of Caffe—LMDB—relies on memory-mapped
I/O to access its database, which can be highly inefficient on
large-scale systems because of its interaction with the process
scheduling system and the network-based parallel filesystem.
Based on this analysis, we then present LMDBIO, our optimized
I/O plugin for Caffe that takes into account the data access
pattern of Caffe in order to vastly improve I/O performance.
Our experimental results show that LMDBIO can improve the
overall execution time of Caffe by nearly 20-fold in some cases.

I. INTRODUCTION

Deep learning has quickly grown in prominence as a key
technology to analyze and characterize large volumes of data.
Deep learning systems utilize a neural network to represent
a complex mathematical equation that can precisely predict
outputs based on given inputs. Training a deep neural net-
work (DNN) is nontrivial because it iteratively processes a
tremendous amount of training data that requires consider-
able computation power and memory. Consequently, several
researchers have parallelized deep learning frameworks that
can harness the performance of large supercomputing systems
to efficiently train the DNN on large volumes of training
data. For instance, Caffe [8] is a well-known deep learning
framework that has been parallelized for efficient execution
on large supercomputing systems [12], [2], [4].

Due to the need to train the DNN with an increasingly large
amount of data, researchers have been pushing the boundaries
of parallelism and scalability that can be achieved by such
frameworks. Common techniques in this area include sophis-
ticated preconditioning approaches that enable the network
training process to begin at a better starting point, rather than a
fully random network, thus allowing for improved parallelism
and, in turn, performance. Such a push in parallelism and
scalability, however, has started to expose new bottlenecks in
the I/O subsystem of deep learning frameworks, such as Caffe,
that urgently need to be addressed.

To put this situation into context, deep learning frameworks,
such as Caffe, iteratively process data in three steps: (1) data
reading from the I/O subsystem, (2) dense computation to
identify deviation errors in the network, and (3) correction for
deviation in order to modify the network appropriately. This
process occurs iteratively over a large number of iterations and
training datasets in order to converge to the desired network
accuracy. As this deep learning training process is scaled up
to large supercomputing systems or to use highly efficient
computational units such as NVIDIA GPUs, Intel Xeon Phi,
or Google TPU processors,1 the computation time continues to
decrease, eventually making data I/O the primary bottleneck
in the system, thus limiting overall scalability. In fact, our
analysis of two large datasets, CIFAR10-Large [10] (on a
medium-sized network called AlexNet [9]) and ImageNet [6]
(on a large-sized network called CaffeNet [11]) showed that
even with a small amount of asynchrony in the network
processing of approximately 4,096 images in each batch,
the performance of Caffe effectively flattens out even at a
relatively small scale of 512 processes, with I/O taking up
a dominant fraction of the overall execution time.

To understand this problem, we first present a detailed
analysis of the I/O subsystem in Caffe. Our analysis shows
that Caffe’s I/O subsystem, called LMDB, relies on memory-
mapped I/O to access its database, which can be highly
inefficient in large-scale systems because of its interaction with
the process scheduling system and the network-based parallel
filesystem. Based on this analysis, we present LMDBIO, our
optimized I/O plugin for Caffe that takes into account the
data access pattern of deep learning frameworks, such as
Caffe, in order to significantly improve I/O performance. We
present performance results comparing Caffe-LMDBIO with
the original Caffe with various datasets and networks and show
that LMDBIO can improve the overall execution time of Caffe
by nearly 20-fold in some cases.

The rest of the paper is organized as follows. Section II
presents an overview of Caffe, LMDB, mmap, and the Com-
pletely Fair Scheduler (CFS) to frame our subsequent discus-
sion. Section III provides a detailed analysis of the I/O sub-
system of Caffe, pointing out causes of its low performance.
Section IV describes LMDBIO and how it addresses the
shortcomings of Caffe’s current I/O subsystem. Experimental
results comparing Caffe-LMDBIO with the original Caffe are
presented in Section V while related work is discussed in
Section VI and concluding remarks in Section VII.

1https://en.wikipedia.org/wiki/Tensor processing unit



II. BACKGROUND

Here we present an overview of the Caffe deep learning
tool, LMDB and mmap, and the Completely Fair Scheduler.

A. Caffe Overview

Caffe is a well-known convolutional neural network training
framework developed by the Berkeley Vision and Learning
Center. The original framework was written in C++ with
CUDA for highly optimized GPU computation, although sub-
sequent variants of Caffe have included support for generic
CPU architectures as well.

The general workflow of Caffe is as follows. The user pro-
vides a training dataset that is used for building the network.
This dataset contains a number of data samples. The idea is
to start with a “guess” about the network parameters, process
each of the data samples on the network parameters to measure
the deviation error in the initial guess, and update the network
parameters based on the observed deviation. One active area
of research is on improving this initial guess of the network
parameters by using various preconditioning techniques.

The most conservative approach for training the network
is to process each data sample sequentially and then imme-
diately update the network parameters. This model is overly
serial, however, and is expensive in practice. Caffe provides a
technique called batch training wherein each training iteration
a network is simultaneously trained with multiple data samples
before the network parameters are adjusted. Such adjustment
happens only after the entire batch of data samples is processed
by using the accumulated gradients of all the samples in
the batch. In this model, the dataset is divided into multiple
batches according to a predefined batch size. The larger the
batch size, the fewer the parameter updates, but also the higher
the number of iterations needed for convergence.
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Fig. 1. Caffe workflow

Since sequential DNN training is not practical, researchers
have begun investigating parallel training for derivatives of
Caffe [12], [2], [4], using either supercomputing systems or
accelerators, where a batch is divided into multiple chunks
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Fig. 2. Workflow of mmap

that are processed concurrently on multiple workers (i.e.,
processes and threads). The workflow of parallel training in
Caffe is illustrated in Figure 1. At the beginning of each
training iteration, each worker reads a subset of a batch from a
database. Caffe provides a variety of data reading options via
several types of databases. The default and the most widely
used option is to use the Lightning Memory-mapped Database
(LMDB) to access the dataset.

Once the data is read, it starts performing a forward training
by computing a weighted sum of inputs in each layer until it
reaches the last layer where a classification error is calculated.
In the backward pass, the error is propagated back into the
network to calculate the network’s parameter gradients. When
the backward pass is done, the gradients computed by each
worker are accumulated and used for updating the parameters
in the network. During the training, the quality of the network
parameters is periodically tested. The training is repeated until
the termination criteria are satisfied, that is, until the desired
accuracy or the maximum number of iterations is reached.

B. LMDB and Mmap

Caffe uses the LMDB database format and library for ac-
cessing the training dataset. LMDB represents the data samples
in a B+ tree format due to its ability to allow for block-based
I/O to improve I/O performance. LMDB internally uses mmap
to map the entire dataset into memory and parse through the
dataset as if it fully resided in memory.

The Unix system call mmap exposes the layout of a file from
the file system into the virtual address space of a process and
enables accesses to the file as if it were a memory buffer. With
mmap, segments of a file, at a page granularity, are loaded
only when they are accessed. Therefore, the mmap file access
method is beneficial for partial file accesses where an entire file
is not accessed at once or when the file represents a complex
database rather than a raw dataset and might require nontrivial
data access patterns. Once the file segments are loaded to
memory, they can be mapped by multiple processes.

Three components are associated with mmap, as shown in
Figure 2: the file system (which can be local or shared across
machines), a page cache (which is shared across processes),
and a virtual address space (which is private to a process).
When mmap is called, a process receives a virtual address
space that the file will be mapped to. The process can access
this buffer freely as if all the data were in memory. If the
process attempts to access a part of the buffer where the
corresponding portion of the file has not yet been mapped



or loaded to memory, a page fault happens, and the page-fault
handler is invoked. The page-fault handler will initially try
to find this page in the page cache to determine whether the
page has already been read to memory. If the page is found in
memory, the handler will map the physical address of the page
to the corresponding virtual address of the process. If the page
is not found in memory, the handler will issue an I/O request
to read the page and its neighboring pages to memory.

While waiting for completion of the I/O operation that is
fetching the data from the file system, the process is put to
sleep and context switched out. It will be woken up to check
whether its I/O request has been completed by the operating
system process scheduler when I/O completion interrupts
come in.

C. Completely Fair Scheduler

Linux kernel 2.6 introduced the Completely Fair Sched-
uler (CFS) as the default process scheduler. CFS guarantees
fairness of CPU usage between processes and attempts to
maximize CPU utilization. The scheduler schedules processes
to execute on the CPUs from a red-black tree where a process
with the least-used CPU time will be chosen to run first. The
scheduler does not take into account the order in which the
processes are enqueued.

In case that processes are waiting for I/O operations to
complete, they are put to sleep. Once an I/O completion
interrupt comes in, all the processes that are waiting for I/O
are marked as runnable. The CFS scheduler then wakes up the
runnable processes in the red-black tree to let the processes
check whether the I/O completion corresponds to the operation
on which they are waiting. If the I/O operation that completed
is not the one they were waiting for, they go back to sleep.

III. ANALYSIS OF I/O IN CAFFE

In this section, we present an analysis of the I/O perfor-
mance of Caffe. Caffe is read-intensive and does not perform
any significant file writes, so much of the analysis is on the
file read accesses in Caffe.

A. Caffe Scalability Analysis

Before we consider the I/O performance in Caffe, we
study the overall execution performance of Caffe in order to
understand the state of I/O in the current framework. Here we
first analyze Caffe’s scalability by training the CIFAR10-Large
dataset using the AlexNet DNN model. We use a batch size
of 4,096 and perform scaling experiments on the Argonne’s
Blues cluster (testbed details are provided in Section V-A).

Let us first consider the overall execution time scalability
(strong scaling) of Caffe compared with ideal scaling in
Figure 3(a). We notice in the graph that the actual training
time starts to differ from the ideal scaling time after just two
processes and that the difference increases with the number
of processes. In fact, with just 512 processes, the performance
of Caffe is nearly 20-fold worse than the ideal scaling per-
formance. To understand this result better, we analyzed the
breakdown in time taken by the various components of Caffe

in Figure 3(b). We note that the data I/O time (represented as
“Read time” in the figure) becomes highly significant when
training a network on a large number of processes. It takes
approximately 70% of the overall training time when using
512 processes and tends to increase when using a larger
number of processes.

Since I/O is a major bottleneck in DNN training, we now
analyze Caffe’s data reading performance. The default data
reading approach of Caffe is to read the dataset from a
memory-mapped file (using mmap) via LMDB. To understand
the data reading performance in Caffe, we measured the data
reading bandwidth of Caffe using different numbers of readers
and compared the results with those of POSIX I/O read
using the IOR benchmark.2 The IOR performance is typically
considered the best case for POSIX I/O that is achievable on
a given platform. Figure 4 shows that the read bandwidth of
Caffe is much worse than that of POSIX I/O read from the
IOR benchmark. This shows that while I/O takes a significant
amount of time in Caffe, most of this performance loss is due
not to hardware limitations in the system but to the inefficient
usage of the available I/O bandwidth.

B. Mmap Analysis

As discussed in Section II-B, mmap exposes the layout of
a file from the file system into the virtual address space of a
process and enables accesses to the file as if it were a memory
buffer. Mmap’s fundamental workflow relies on dynamically
fetching data from the file system to physical memory and
mapping pages from the physical memory to the corresponding
virtual address space of the process.

Despite its various benefits, mmap suffers from a few
shortcomings, specifically in the way it handles I/O requests.
When a user process accesses a page, if that page is not already
in memory, a page fault handler is triggered to fetch the data
from the file system. This I/O request is then passed down
to the hardware controller (e.g., SCSI for local storage or a
network adapter for network-based file systems) and the user
process goes to sleep while waiting for the I/O request to
complete. When the I/O operation completes, the hardware
controller raises an interrupt informing the file system of the
completion. One important aspect to note here is that this
interrupt handler is a bottom-half handler in Linux. That is,
the interrupt is not associated with any particular user process
in the system but is a generic event informing the file system
that an I/O operation that was issued by one or more processes
has now completed. Thus, this interrupt handler then marks as
runnable all processes that were sleeping while waiting for an
I/O event.

At this point, the CFS scheduler takes over. The next time
the scheduler is triggered, it traverses all processes in its red-
black tree and schedules the runnable processes one at a time.
In general, however, since only some of the processes were
waiting for that specific I/O operation that just completed, most
processes will see that their I/O operation has not completed

2https://github.com/LLNL/ior
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and go back to sleep. Only one or a few processes will be
able to use this I/O completion to perform further processing.
Consequently, this model significantly increases the number of
context switches that get triggered with most of the switches
resulting in no real work. This approach thus increases the
amount of “sleep time” associated with each process as well.

This problem is not present when performing a simple mmap
I/O with a single process accessing the data. In such cases, the
I/O completion handler wakes up only one process, and every
completion corresponds to the exact process that is waiting
for that I/O operation. But, the larger the number of readers,
the greater the chance that the processes will be woken up
without having any real work to do. Therefore, we expect the
total number of context switches in the processes to grow as
we increase the number of readers. Moreover, we expect that
with more than one process, the processes will spend most of
the data reading time waiting for I/O (i.e., sleeping).

We demonstrate this behavior in Figures 5(a) and 5(b). As
expected, the context switches increase as we increase the
number of processes, and the sleep time when using more
than one process takes approximately 90% of the overall read
time. These results show that mmap-based file access is highly
inefficient with more than one process because processes are
wasting time in getting context switched in and out for I/O
interrupts that do not belong to them.

IV. LMDBIO: DESIGN AND IMPLEMENTATION

As discussed in Section III, the current I/O infrastructure
in Caffe is highly inefficient in the way that it accesses data.
The primary inefficiency comes from the way mmap-based I/O
requests are generated and handled by multiple processes. To
alleviate this issue, we propose LMDBIO—an I/O plugin for
Caffe that takes the data access characteristics of Caffe into
account to optimize the I/O performance.

A. Overview of LMDBIO

One of the major drawbacks in the current data I/O model
in Caffe is the lack of true parallelism. Data fetching for each
process is independent of the other processes even though
it is a parallel application and the I/O could, in principle,
be coordinated, thus losing several potential optimization
opportunities. Often, this approach results in unnecessary data
to be read and discarded. Moreover, since all processes are
performing data I/O and relying on the underlying bottom-
half handler to wake them up, the wakeup model is imprecise
and leads to unnecessary context switches.

The general idea of LMDBIO is to utilize what we refer
to as “localized mmap.” In this model, a single process is
chosen on each node as the root process. The root process
reads data from the file system and distributes it to the
remaining processes on the node using MPI-3 shared memory.
This approach aims to reduce I/O parallelism to give mmap
a more sequential view of I/O and to minimize interprocess
contention. The mmap localization approach also allows the
traditional Linux bottom-half handler for I/O to wake up the
exact process that is waiting on I/O, since only one process is
performing I/O. This strategy minimizes the number of context
switches and helps improve performance.

LMDBIO is written in C++ and utilizes MPI and LMDB
as core engines. We assume the availability of MPI-33 in
order to allow LMDBIO to detect process colocation auto-
matically, perform reader assignment, and utilize a shared-
memory buffer. LMDBIO adopts LMDB’s API for accessing

3Most supercomputers in the world already support MPI-3. The only
notable exception to this claim is the IBM Blue Gene series of supercomputers
that do not yet support MPI-3. However, these supercomputers are nearing
their end of life, and the next generation of supercomputers from IBM do
plan to support MPI-3 and later MPI standards.
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the database file efficiently. Moreover, LMDBIO abstracts par-
allel data reading from applications and provides a convenient
C++ API that the applications can utilize to obtain the data
for each process.

B. Detecting Colocated Processes

One of the first aspects that we need to solve in order
to achieve localized mmap as described in Section IV-A is
to detect which processes reside on the same node (or more
precisely, which processes share the same mmap page cache
and bottom-half interrupt handlers).

Achieving this objective portably is hard. LMDBIO adopts a
feature in MPI-3 to split a global MPI communicator into mul-
tiple local communicators (MPI_Comm_split_type with
MPI_COMM_TYPE_SHARED). The general idea of this feature
is to inform the user of the group of processes that are
capable of allocating a shared-memory buffer. In theory, the
MPI implementation can provide any group of processes that
are capable of creating a shared-memory buffer together. For
example, this could be all the processes on the same NUMA
domain or same socket. In practice, however, this group is
often the processes that reside on the same node and thus share
the same page cache and bottom-half interrupt handlers. This
gives us a semi-portable way to detect processes on the same
node with the added convenience that in case the approach
does not give the right set of processes, we can gracefully
degrade performance rather than failing outright.

Once the communicators are set up, LMDBIO chooses one
reader from each local group as the “root.”

C. Inner Workings of LMDBIO

LMDBIO consists of two phases: an initialization phase and
a data reading phase.

Initialization phase: In the initialization phase, LMDBIO
assigns one reader per node using the approach mentioned in
Section IV-B. Then, each reader opens the LMDB database
that internally maps the database to that process’s virtual
address space using mmap. All processes on the node also
allocate a shared-memory buffer that is directly accessible by
all of them.

Data reading phase: In the data reading phase (shown in
Figure 6), each reader in LMDBIO (one process per node)
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reads B/R data samples (B is the batch size and R is the
number of readers) from the database. The data is read from
the file system to page cache and mapped to the virtual address
space of the reader process. The reader process then copies the
data to the shared-memory buffer that was allocated during the
initialization phase in order to allow other processes to access
this data. LMDBIO then synchronizes the processes within the
local communicator (to ensure that the read has completed),
after which the other processes on the node are allowed to
access the shared-memory buffer. Even though each process
has full access to all of the shared-memory buffer, LMDBIO
internally limits such access so that each process can access
only B/P samples of data (P is a total number of processes).

D. Shortcomings of LMDBIO

Despite the various advantages of LMDBIO it still suffers
from some shortcomings.

Serialized I/O: LMDBIO serializes I/O on each node so only
one process per node is doing the I/O rather than all processes.
While this approach is beneficial for minimizing the amount
of interprocess I/O contention that occurs with mmap, we
also lose the opportunity to maximize a read bandwidth of
the file system. To utilize the I/O bandwidth more efficiently
with multiple processes, we have to use other approaches, for
example, direct I/O, in order to avoid the problems with mmap.

Buffer Aliasing: In general, when a buffer is allocated, the
allocated memory can contain pointers to other pieces of
memory. Thus, any access on such memory could inadver-
tently modify other memory regions: a problem referred to as



buffer aliasing. Most compilers are conservative in computing
on aliased buffers since they need to be aware of such side
effects and consequently generate less-optimized code. Malloc
and malloc-like memory allocation calls are special in that
they pass a special attribute to the compiler assuring it that
any buffer allocated through malloc is not aliased. Thus, the
compiler can perform more aggressive optimizations on this
buffer, leading to better performance. Unfortunately, this “no
aliasing” attribute can be passed to the compiler only when
the return value of the allocation function is the memory
buffer, not when the memory buffer is a function parameter.
The MPI-3 shared-memory buffer allocation function misses
this optimization opportunity: the shared-memory buffer that
is allocated is not the return value of the function, but rather
a function parameter. This is a flaw in the MPI-3 interface
design and one that can cause degradation in the compiler
optimization. This issue can be worked around by using
restrict pointers to access the buffer, which provides the
compiler with equivalent information as an unaliased buffer,
thus achieving the same level of performance. But this is an
extra step that the application needs to be aware of.

TLB Misses: In LMDBIO, the data samples are copied from
the mmap buffer into a shared-memory buffer. In traditional
Caffe, this data is copied into a regular malloc buffer. Un-
fortunately, malloc buffers and shared-memory buffers differ
significantly in the way the OS assigns physical pages to them.
Buffers allocated with malloc use large 2 MB pages on most
processors, whereas shared-memory buffers use regular 4 KB
pages. Thus, computing directly on this buffer might cause
a larger number of TLB misses when using shared memory
than when using malloc. In Caffe, we are not affected by this
issue because of a second transformation that copies the data
again into another malloc buffer before any core computation
is done. Thus, the core computation itself does not suffer from
the increased TLB misses. Nevertheless, this is an issue that
future variants of Caffe need to be aware of.

V. EXPERIMENTS AND ANALYSIS

In this section we present and analyze several experimental
results to showcase the capability of LMDBIO.

A. Experimental Platform

The experimental evaluation for this paper was performed
on Argonne’s “Blues” cluster.4 Blues consists of 310 com-
puting nodes connected via InfiniBand Qlogic QDR. Each
node has 64 GB of memory and two Sandy Bridge 2.6 GHz
Pentium Xeon processors (16 cores, hyperthreading disabled).
The storage is 110 TB of clusterwide space provided by
GPFS and 15 GB of on-node ramdisk. We built both the
original Caffe and Caffe-LMDBIO by using the Intel ICC
compiler (version 13.1.3). We used MVAPICH-2.2 with the
PSM netmod [17] for all experiments. All experiments were
run three times and the average performance is shown.

4http://www.lcrc.anl.gov/about/blues

We used two datasets for our experiments. The first dataset
was the CIFAR10-Large dataset that was trained by using the
AlexNet DNN model. The CIFAR10-Large dataset consists
of 50 million sample images, each approximately 3 KB. The
total dataset size, including the raw images and some metadata
corresponding to the images, is approximately 190 GB. The
second dataset was the ImageNet dataset that was trained
by using the CaffeNet DNN model. The ImageNet dataset
consists of 1.2 million sample images, each approximately
192 KB. The total dataset is 240 GB. Although both datasets
can be I/O intensive, the ImageNet dataset is particularly so,
given the size of the images that need to be processed.

For our experiments we used a batch size of 4,096 for
both datasets. We trained the network for the CIFAR10-
Large dataset over 1,024 iterations (4 million images) and the
ImageNet dataset over 32 iterations (128K images).

B. Performance Comparison

Figure 7(a) compares the performance of the original Caffe
with that of Caffe-LMDBIO for the CIFAR10-Large dataset.
The general trend that we notice is that Caffe-LMDBIO per-
forms better than Caffe by up to a factor of 1.75. Figure 7(b)
shows the breakdown of performance for Caffe-LMDBIO
where we notice that time taken by the data I/O (represented as
“Read time” in the figure) has reduced significantly compared
with that of the original Caffe implementation (shown in
Figure 3(b)), specifically from 70% to 30%. We note that
our work is not fully done yet; I/O still takes a large portion
of the overall time even in the LMDBIO optimized version.
Nevertheless, the proposed approach is still a significant step
toward improving I/O performance for Caffe. Moreover, this
improvement is despite the reduced I/O parallelism and the
extra data copy that we perform within Caffe-LMDBIO.

We performed a similar analysis on the ImageNet dataset,
as shown in Figures 8(a) and 8(b). The general trend for
ImageNet is similar to that of CIFAR10-Large. However, we
notice that the performance improvement with Caffe-LMDBIO
is significantly larger for ImageNet, showing improvements
up to 20-fold in some cases. This larger improvement for
ImageNet is attributed to the larger images in its dataset.

C. Analysis of Context Switches

Apart from overall performance, we also studied the number
of process context switches with Caffe-LMDBIO. Again, our
analysis was performed with both CIFAR10-Large and Ima-
geNet. Figure 9 shows the improvement in context switches for
the two datasets. We see that the number of context switches is
significantly better for Caffe-LMDBIO compared with that of
the original Caffe. For the CIFAR10-Large dataset, LMDBIO
reduces the number of context switches by nearly 120-fold. For
ImageNet, the improvement is even more dramatic, with close
to a 700-fold reduction in the number of context switches.

This improvement is expected. Since LMDBIO has a single
process performing mmap it ensures that no contention occurs
between mmap calls performed by multiple processes. This
serialization reduces the number of unnecessary wakeups
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Fig. 9. LMDBIO context switches: (a) CIFAR10-Large dataset; (b) ImageNet dataset

created by the interrupt handler thus reducing the number of
context switches.

VI. RELATED WORK

Given the immense popularity of deep learning, consider-
able research has been conducted addressing various aspects
of deep learning.

Other Deep Learning Frameworks: While this paper focuses
on Caffe, it is not the only deep learning framework used in
the community. Theano [18] was one of the first deep learning
toolkits which also has a parallel version [14]. Google’s Ten-
sorFlow [3] is another highly flexible dataflow-like architecture
where nodes in the graph represent mathematical operations
and an edge between nodes represents a multidimensional data
array communicated between them, called a tensor. Recently,

a distributed version of TensorFlow has been released, where
tasks can be distributed over multiple cluster nodes with
data transferred through the gRPC protocol [1]. Vishnu et
al. contributed to the distributed version of TensorFlow using
MPI [19] to scale it on supercomputing systems. While all
these frameworks allow for different forms of parallelization
and network generation, however, their core I/O infrastructure
is not that different. In particular, using LMDB datasets for
storing data samples is a common practice in the community;
and regardless of which deep learning framework we use, as
long as it accesses LMDB datasets it will suffer from the same
issue. Thus, our work is broadly applicable to these other deep
learning frameworks as well.

Many parallel variants of Caffe itself have been published.
Of these, MPI-Caffe [12] and Caffe-MPI [2] target only the



compute portions of the framework and do little to optimize
I/O. S-Caffe [4] performs parallel data read but does not
analyze the issues with Caffe-IO and inherits many of its
shortcomings. Our work aims at fixing the underlying cause of
the performance degradation in Caffe-IO, making it applicable
to all Caffe derivatives.

Parallel I/O: In HPC systems, I/O subsystems are typically
the slowest components. Researchers are looking into ways to
parallelize data access in order to improve the I/O bandwidth.
MPI-IO [15], [16] provides a low-level interface to carry out
parallel I/O for generic unstructured data. Other higher-level
I/O libraries such as HDF55 and NetCDF [5] also exist. These
libraries abstract various structured scientific application data
into portable file formats and provide feature-rich program-
ming interfaces. Parallel HDF5 [7] and PnetCDF [13] provide
parallel access and storage for files with those formats based
on MPI-IO.

Although these I/O frameworks are more efficient than
mmap, they are all based on explicit I/O. That is, the user
must provide the exact bytes in the file that would be accessed
before actually accessing them. On the other hand, mmap
performs implicit I/O. That is, it exposes the entire file into the
virtual address space of the process; and depending on what
part of the file is being accessed, it dynamically fetches the
corresponding data. This implicit model is more convenient
for complex datasets that require I/O access that is not simple
sequential reading (e.g., LMDB uses a B+ tree format to store
its data). Thus, while in the long term it is valuable to migrate
the I/O model of Caffe and other deep learning systems to use
explicit I/O, our approach provides the shortest path solution
to improve I/O performance without requiring all existing
datasets to be migrated away from the LMDB format.

VII. CONCLUDING REMARKS

In this paper, we presented a scalable I/O plugin, called
LMDBIO, for the Caffe deep learning framework. We first
performed a detailed analysis of I/O in Caffe, showcased
the problems associated with it, and discussed the cause of
these problems. We then presented LMDBIO, which alleviates
these problems to improve the I/O performance. We presented
experimental results with two datasets and network models,
demonstrating nearly a 20-fold improvement in the overall
performance of Caffe in some cases.
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